

MICHAEL S. WONG, PhD

EDUCATION AND TRAINING

California Institute of Technology	Chemical Eng	ineering	BS	1994
Massachusetts Institute of Technology	Chemical Eng	ineering Practice	MS	1997
Massachusetts Institute of Technology	Chemical Eng	ineering	PhD	2000
University of California, Santa Barbara	Chemistry	Postdoctoral trai	ning	2000-2001

PROFESSIONAL APPOINTMENTS

Assistant Professor	Rice University	2001-2007	
Associate Professor		2007-2010	
Professor		2010-present	
Department Chair		2014-present	
Patel Endowed Chair		2020-present	
Professor of Chemical and Biomolecular Engineering, of Chemistry (2002), of Civil and			
Environmental Engineering (2012), of Materials Science and NanoEngineering (2013)			

LEADERSHIP AND SERVICE APPOINTMENTS

American Institute of Chemical Engineers South Texas Section, Director	2022-2023
AIChE Nanoscale Science and Engineering Forum (NSEF), Chair, Vice	
Chair, Second Vice Chair, Director of Communications, Past Chair	2005-2012
ACS Division of Catalysis Science & Technology (CATL) Past-Chair	2018-2019
Councilor	2020-2023
North American Catalysis Society (NACS), Board of Directors	2021-2022
Southwest Catalysis Society (SWCS), Past Chair	2009-2011
ACS Society Committee on Publications (SCOP), Member	2022-2023
ACS ES&T Engineering, Topic Editor	2022-2023
Applied Catalysis B: Environmental, Editorial Board Member	2012-present
U.S. Army Science Board (The ASB is a Federal Advisory Committee that	
reports to the Secretary of the Army and Secretary of Defense), <i>Member</i>	2018-2021
NSF-ERC NEWT (Nanotechnology Enabled Water Treatment) Center,	
Research Thrust Leader	2014-present

RESEARCH BACKGROUND AND INTERESTS

My research program broadly addresses chemical engineering problems using the tools of heterogeneous catalysis and materials chemistry. A key program objective is to develop scientific principles and engineering approaches that improve our ability to manage our natural resources sustainably (water, hydrocarbons), *e.g.*, clean-water catalysis. The Catalysis and Nanomaterials Laboratory (grants exceeding \$20MM, 170+ publications, 20+ pending/issued patents, 300+ presentations, 1 startup company) works in the thematic area of nanotechnology. My *Google scholar* h-index is >60, and total citations are >14K. I am Research Thrust Leader in the NSF-funded NEWT (Nanotechnology Enabled Water Treatment) Engineering Research Center, based at Rice. I serve as Topic Editor for *ACS ES&T Engineering*, *Appl. Catal. B Env.* editorial board member, and formerly an Army Science Board member.

SELECTED HONORS AND AWARDS

0			
Fellow	of the American Institute of Chemical Engineers		2022
Presid	ential Award for Mentoring, Rice University		2021
Merito	ious Civilian Service Medal, Department of the Army		2021
Tina ai	nd Sunit Patel Professor in Molecular Nanotechnology Endowed	Chair	2020
Southv	vest Region ACS Award (highest honor given by ACS region)		2019
William	M. McCardell Professor in Chemical Engineering Endowed Cha	air	2019-2020
Joe W	Hightower Award, ACS – Greater Houston Section		2018
Fellow	of the American Chemical Society		2018
SWCS	-NACS Excellence in Applied Catalysis Award		2015
AIChE	South Texas Section Best Fundamental Paper Award	2009, 20	12, 2020, 2022
AIChE	South Texas Section Best Applied Paper Award	2006, 20	11, 2013, 2022
Smiths	onian Magazine's "37 Under 36" Young Innovator Award		2007
MIT Te	chnology Review's TR35 Young Innovator Award		2006
AIChE	Nanoscale Science and Engineering Forum Young Investigator	Award	2006

CURRENT RESEARCH EFFORTS

Engineering Research Center for Nanotechnology Enabled Water Treatment	
Systems (NEWT); NSF Senior Personnel	08/2015-07/2025
Understanding the Role of Potassium in VAM Production through in situ	
Monitoring; Celanese Chemical PI	07/2018-12/2022
CLES-EM: Clean, Lean, and Efficient Synthesis of Energetic Materials in	
Sciences for Lethality and Protection and Materials Research;	
DOD Army Research Laboratory PI	06/2021-05/2026
Chemical-free light-driven destruction of per- and polyfluoroalkyl substances	
(PFAS) using non-toxic boron nitride (BN); DOD/EPA PI	05/2022-04/2023
Highly Efficient Solar Water-Splitting Using 3D/2D Hydrophobic Perovskites	
with Corrosion Resistant Barriers; DOE co-Pl	10/2019-09/2022

SELECTED PUBLICATIONS (170+ published, <u>#citations</u>)

- 1. M. O. Nutt *et al.*, "Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination," **Environ. Sci. Technol.** 39, 1346-1353 (**2005**). (<u>link</u>)
- 2. R. K. Rana *et al.*, "Nanoparticle Self-Assembly of Hierarchically Ordered Microcapsule Structures," **Adv. Mater.** 17, 1145-1150 (**2005**). (<u>link</u>)
- S. Asokan *et al.*, "The Use of Heat Transfer Fluids in the Synthesis of High-quality CdSe Quantum Dots, Core/Shell Quantum Dots, and Quantum Rods," Nanotechnology 16, 2000-2011 (2005). (link)
- 4. M. O. Nutt *et al.*, "Improved Pd-on-Au Bimetallic Nanoparticle Catalysts for Aqueous-phase Trichloroethene Hydrodechlorination," **Appl. Catal. B. Env.** 69, 115-125 (**2006**). (<u>link</u>)
- 5. P. R. LeDuc *et al.*, "Towards an *in vivo* Biologically Inspired Nanofactory," **Nature Nanotech.** 2, 3-7 (**2007**). (<u>link</u>)

- K. N. Heck *et al.*, "Observing Metal-catalyzed Chemical Reactions *in situ* using Surfaceenhanced Raman Spectroscopy on Pd-Au Nanoshells," J. Am. Chem. Soc. 130, 16592-16600 (2008). (link)
- W. Zhou *et al.*, "Identification of Active Zr WO_x Clusters on a ZrO₂ Support for Solid Acid Catalysts," Nature Chem. 1, 722-728 (2009) (<u>link</u>)
- J. Yu *et al.*, "Self-assembly Synthesis, Tumor Cell Targeting, and Photothermal Capabilities of Antibody-coated Indocyanine Green Nanocapsules," J. Am. Chem. Soc. 132, 1929-1938 (2010). (link)
- N. Soultanidis *et al.*, "Relating n-Pentane Isomerization Activity to the Tungsten Surface Density of WO_x/ZrO₂," J. Am. Chem. Soc. 132, 13462-13471 (2010). (link)
- 10. L. A. Pretzer, *et al.*, "Hydrodechlorination Catalysis of Pd-on-Au Nanoparticles Varies with Particle Size," **J. Catal.** 298, 206-217 (**2013**). (<u>link</u>)
- 11. M. D. Blankschien *et al.*, "Light-triggered biocatalysis using thermophilic enzyme–gold nanoparticle complexes," **ACS Nano** 7, 654-663 (**2013**). (<u>link</u>)
- 12. L. Chen *et al.*, "Ring-locking Enables Selective Anhydrosugar Synthesis from Carbohydrate Pyrolysis," **Green Chem.** 18, 5438-5447 (**2016**) (<u>link</u>)
- 13. S. Guo *et al.*, "Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts" **ACS Catal.** 8, 503-515 (**2018**). (<u>link</u>)
- 14. P. Westerhoff *et al.*, "Low Risk Posed by Engineered and Incidental Nanoparticles in Drinking Water" **Nature Nanotech.** 13, 661-669 (**2018**) (<u>link</u>)
- 15. K. N. Heck *et al.*, "Catalytic Converters for Water Treatment" **Acc. Chem. Res.** 52, 906-915 (2019). (link)
- 16. C. A. Clark *et al.*, "Highly Defective UiO-66 Materials for the Adsorptive Removal of PFOS" **ACS Sustainable Chem. Eng.** 7, 6619 (**2019**). (<u>link</u>)
- 17. C. A. Clark *et al.*, "Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium" **ACS Catal.** 10, 494-509 (**2020**). (<u>link</u>)
- C. L. Conrad *et al.*, "Fit-for-Purpose Treatment Goals for Produced Waters in Shale Oil and Gas Fields" Water Res. 173 (2020). (<u>link</u>)
- 19. L. Duan, B. Wang, *et al.*, "Efficient Photocatalytic PFOA Degradation over Boron Nitride" Environ. Sci. Technol. Lett. 7, 613 (2020). (link)
- 20. Y. Xu *et al.*, "Heavy Oil Viscosity Reduction at Mild Temperatures Using Palladium Acetylacetonate" **Fuel** 294, 120546 (**2021**) (<u>link</u>)

SIGNIFICANT PATENTS (20+ issued and pending patents)

- "Multimetallic Nanoshells for Monitoring Chemical Reactions," US Patent No. 8,605,280 (2013) (<u>link</u>)
- 2. "Tungstated Zirconia Nanocatalysts," US Patent No. 8,455,392 (2013) (link)
- 3. "Synthesis of Ultrasmall Metal Oxide Nanoparticles," US Patent No. 9,061,268 (2015) (link)
- "Converting Nanoparticles in Oil to Aqueous Suspensions," US Patent No. 9,321,021 (2016) (link)
- "Method of Decreasing the Viscosity of Heavy Oil Downhole," US Patent Application Publication No. US2017/0349808 (2017) (<u>link</u>)